P Beckhove, M Feuerer, M Dolenc, F Schuetz, C Choi, N Sommerfeldt, J Schwendemann, K Ehlert, P Altevogt, G Bastert, V Schirrmacher, V Umansky. (2004). " Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. " J Clin Invest. 114, 67-76. PMID: 15232613 DOI: 10.1172/JCI20278
Bone marrow of breast cancer patients was found to contain CD8(+) T cells specific for peptides derived from breast cancer-associated proteins MUC1 and Her-2/neu. Most of these cells had a central or effector memory phenotype (CD45RA(-)CD62L(+) or CD45RA(-)CD62L(-), respectively). To test their in vivo function, we separated bone marrow-derived CD45RA(+) naive or CD45RA(-)CD45RO(+) memory T cells, stimulated them with autologous dendritic cells pulsed with tumor lysate, and transferred them into NOD/SCID mice bearing autologous breast tumors and normal skin transplants. CD45RA(-) memory but not CD45RA(+) naive T cells infiltrated autologous tumor but not skin tissues after the transfer. These tumor-infiltrating cells had a central or effector memory phenotype and produced perforin. Many of them expressed the P-selectin glycoprotein ligand 1 and were found around P-selectin(+) tumor endothelium. Tumor infiltration included cluster formation in tumor tissue by memory T cells with cotransferred dendritic cells. It was associated with the induction of tumor cell apoptosis and significant tumor reduction. We thus demonstrate selective homing of memory T cells to human tumors and suggest that tumor rejection is based on the recognition of tumor-associated antigens on tumor cells and dendritic cells by autologous specifically activated central and effector memory T cells.