(2012).
" Partial tolerance of autoreactive B and T cells to erythrocyte-specific self-antigens in mice.
"
Haematologica.
97,
1836-44.
PMID:
22733018
DOI:
10.3324/haematol.2012.065144
BACKGROUND: Breakdown of humoral tolerance to RBC antigens may lead to autoimmune hemolytic anemia, a severe and sometimes fatal disease. The underlying mechanisms behind the breakdown of humoral tolerance to RBC antigens are poorly understood.
DESIGN AND METHODS: In order to study the pathogenesis of autoimmune hemolytic anemia, we developed a murine model with RBC-specific expression of a model antigen carrying epitopes from hen egg lysozyme and ovalbumin.
RESULTS: Humoral tolerance was observed; this was not broken even by strong immunogenic stimulation (lysozyme or ovalbumin with adjuvant). Autoreactive CD4(+) T cells were detected by tetramer enrichment assays, but failed to activate or expand despite repeat stimulation, indicating a nonresponsive population rather than deletion. Adoptive transfer of autoreactive CD4(+) T cells (OT-II mice) led to autoantibody (anti-lysozyme) production by B cells in multiple anatomic compartments, including the bone marrow.
CONCLUSIONS: These data demonstrate that B cells autoreactive to RBC antigens survive in healthy mice with normal immune systems. Furthermore, autoreactive B cells are not centrally tolerized and are receptive to T-cell help. As the autoreactive T cells are present but non-responsive, these data indicate that factors that reverse T-cell non-responsiveness may be central to the pathogenesis of autoimmune hemolytic anemia
DESIGN AND METHODS: In order to study the pathogenesis of autoimmune hemolytic anemia, we developed a murine model with RBC-specific expression of a model antigen carrying epitopes from hen egg lysozyme and ovalbumin.
RESULTS: Humoral tolerance was observed; this was not broken even by strong immunogenic stimulation (lysozyme or ovalbumin with adjuvant). Autoreactive CD4(+) T cells were detected by tetramer enrichment assays, but failed to activate or expand despite repeat stimulation, indicating a nonresponsive population rather than deletion. Adoptive transfer of autoreactive CD4(+) T cells (OT-II mice) led to autoantibody (anti-lysozyme) production by B cells in multiple anatomic compartments, including the bone marrow.
CONCLUSIONS: These data demonstrate that B cells autoreactive to RBC antigens survive in healthy mice with normal immune systems. Furthermore, autoreactive B cells are not centrally tolerized and are receptive to T-cell help. As the autoreactive T cells are present but non-responsive, these data indicate that factors that reverse T-cell non-responsiveness may be central to the pathogenesis of autoimmune hemolytic anemia